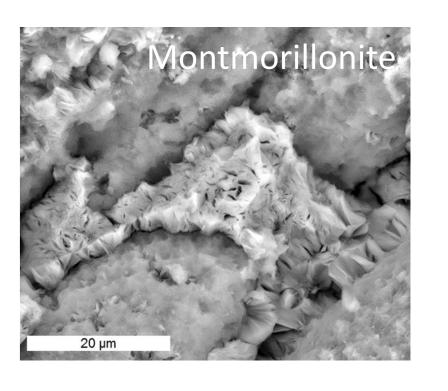
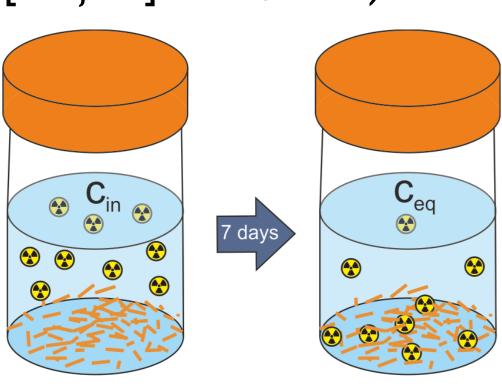
RETENTION OF ²²⁶RA BY MONTMORILLONITE

8TH INTERNATIONAL CONFERENCE


13-16 June 2022 - Nancy (France)

¹M. Klinkenberg, ²M. Marques Fernandes, ²B. Baeyens, ¹D. Bosbach, ¹F. Brandt

¹IEK-6 Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, Germany ²Paul Scherrer Institut, Laboratory for Waste Management – Villigen, Switzerland ON CLAYS IN NATURAL AND ENGINEERED BARRIERS FOR RADIOACTIVE WASTE CONFINEMENT


Introduction

Although ²²⁶Ra is a critical radionuclide in the safety analysis for deep geological disposal of spent nuclear fuel, adsorption data for ²²⁶Ra onto clay minerals are sparse. So far, the retention of ²²⁶Ra by clay minerals is assumed similar to that of Sr and Ba, based on chemical analogy. Montmorillonite as a major constituent of bentonite (up to 90 wt.-%) is an important sink for potentially released radionuclides. This study presents new adsorption data of Ba and ²²⁶Ra on montmorillonite. Is Ba a good analogue for Ra?

Materials & Methods

- Homo-ionic Na form of Wyoming montmorillonite (SWy-2)
- Batch adsorpion experiments:
 - ²²⁶Ra and Ba adsorption edges in the pH range 5 to 10 at different ionic strengths (0.01 - 0.3 M NaCl)
 - $-^{226}$ Ra and Ba adsorption isotherms (pH 7, 10^{-9} M < [Ra,Ba] > 10^{-2} M)

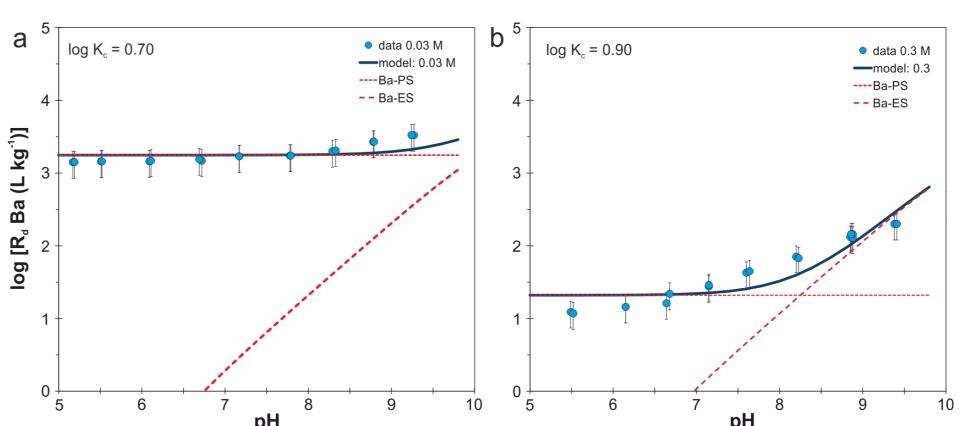
$$R_d = \frac{C_{solid}}{C_{liquid}} = \frac{C_{in} - C_{eq}}{C_{eq}} \frac{V}{M}$$

Modelling:

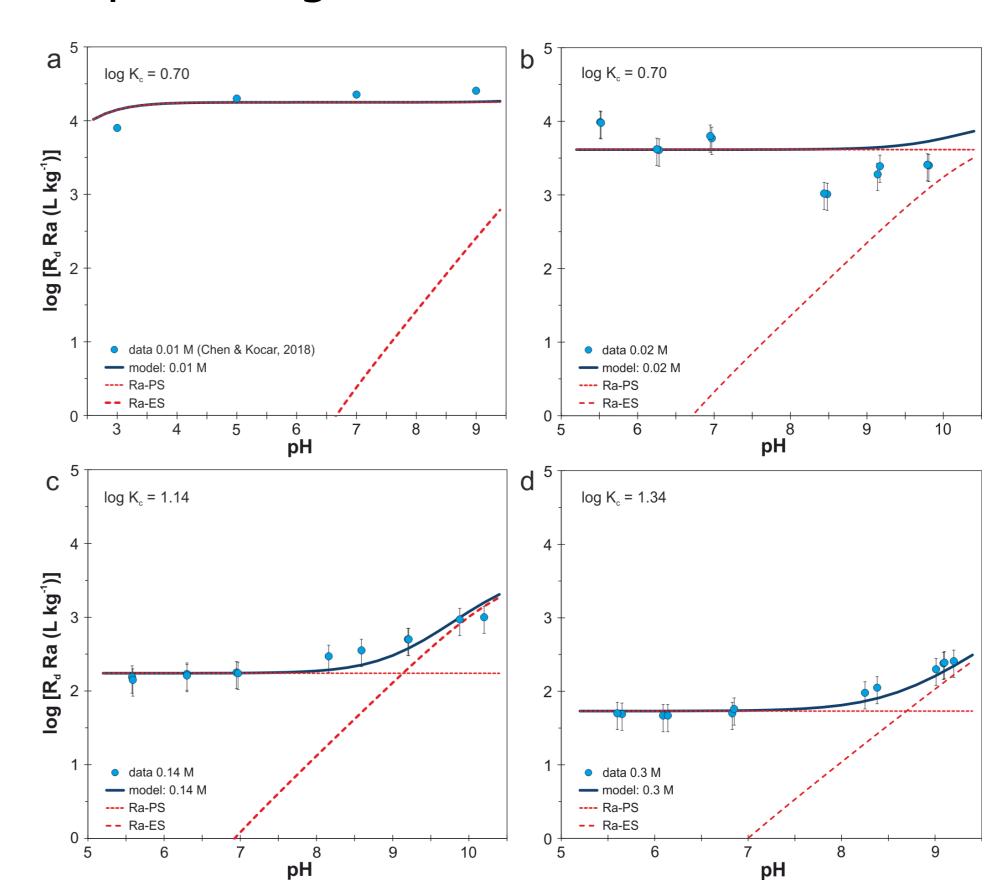
 Two site Protolysis Non Electrostatic Surface Complexation and Cation Exchange adsorption model (2SPNE SC/CE) [1].

Results: Modelling

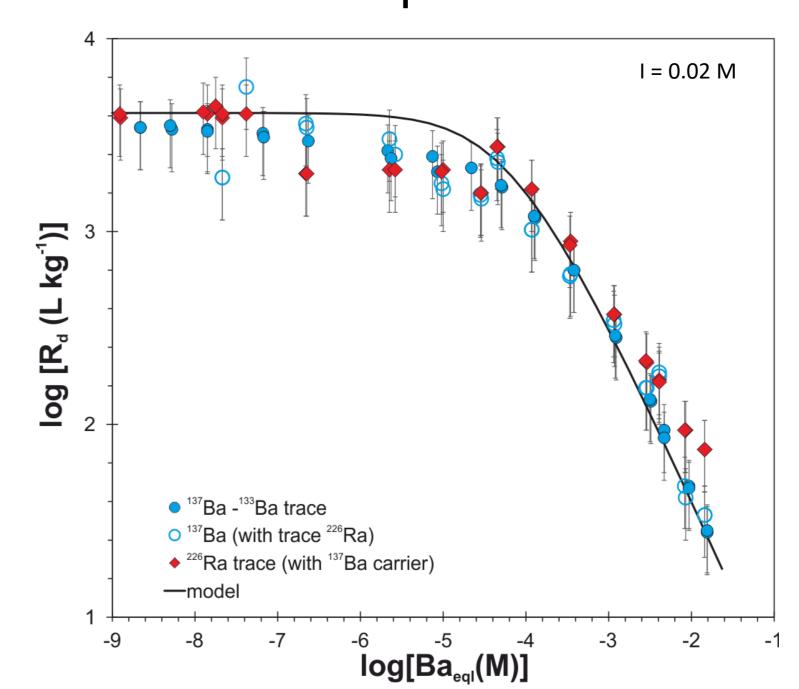
Experiment	Kine	tics		Edg	jes		Isotherms
NaCl concentration (M)	0.02	0.1	0.01	0.02	0.14	0.3	0.02
Cation exchange reaction	log K _c						
$2Na-SWy + Ba^{2+} \Leftrightarrow Ba-SWy + 2Na^{+}$	-	-	-	0.70	-	0.90	0.70
2Na-SWy + Ra ²⁺ ⇔ Ra-SWy + 2Na ⁺	0.84	1.34	0.70	0.70	1.14	1.34	0.70


Low ionic strength: Cation exchange reactions between $Ba^{2+}-Na^{+}$ and $Ra^{2+}-Na^{+}$ on the planar sites of Na-SWy with corresponding selectivity coefficients (K_c) quantitatively describe all experimental data. Similar K_c for Ba and $C^{226}Ra$.

Site type	Capacity				
≡S ^{W2} OH	4.0·10 ⁻² mol·kg ⁻¹				
Surface complexation reactions	Constants				
$\equiv S^{W2}OH + H^+ \Leftrightarrow \equiv S^{W2}OH_2^+$	log K ⁺ = 6.0				
$\equiv S^{W2}OH \iff \equiv S^{W2}O^- + H^+$	log K ⁻ = -10.5				
$\equiv S^{W2}OH + Ba^{2+} \Leftrightarrow \equiv S^{W2}OBa^{+} + H^{+}$	$log K_1 = -5.0$				
$\equiv S^{W2}OH + Ra^{2+} \Leftrightarrow \equiv S^{W2}ORa^{+} + H^{+}$	$log K_1 = -5.0$				


High ionic strength, high pH: an additional surface complexation reaction on the amphoteric edge sites of Na-SWy needs to be considered, reproducing the experimental data for both elements quite well. Different K_c for Ba and 226 Ra at high ionic strength.

Results: Experiments


Barium adsorption edges:

Radium adsorption edges:

Barium and radium adsorption isotherms:

Download the paper with all results here:

Klinkenberg et al. 2021
Appl. Geochem. (open access)

Conclusions

- Ba is good analogue for ²²⁶Ra regarding the adsorption on montmorillonite at ionic strengths < 0.1 M and pH < 8
- ²²⁶Ra deviates in its behaviour at higher ionic strength
- A plausible explanation for this observation: larger ionic radius of 226 Ra compared to Ba \rightarrow favours its selectivity behaviour on Na-montmorillonite
- The contribution of surface complexation to the overall adsorption is the same for Ba and Ra and is independent of ionic strength

References & Acknowledgements

[1] Bradbury & Baeyens, 1997. J. Contam. Hydrol. 27, 223-248; [2] Chen & Kocar, 2018. Environ. Sci. Technol. 52, 4023-4030. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593.

